
INHERITANCE
Class : II B.C.A

Mrs.R.SAIKUMARI
Assistant Professor

Department of Computer Applications

SRI AKILANDESWARI WOMEN’S COLLEGE,

WANDIWASH

SWAMY ABEDHANADHA EDUCATIONAL TRUST,

WANDIWASH

2

Inheritance

• On the surface, inheritance is a code re-use

issue.

– we can extend code that is already written in a

manageable manner.

• Inheritance is more

– it supports polymorphism at the language level

3

Inheritance

• Take an existing object type (collection of
fields and methods) and extend it.

– create a special version of the code without re-
writing any of the existing code (or even
explicitly calling it!).

– End result is a more specific object type, called
the sub-class / derived class / child class.

– The original code is called the superclass /
parent class / base class.

4

Inheritance Example

• Employee: name, email, phone

– FulltimeEmployee: also has salary, office, benefits, …

• Manager: CompanyCar, can change salaries, rates contracts,

offices, etc.

– Contractor: HourlyRate, ContractDuration, …

• A manager is a special kind of FullTimeEmployee,

which is a special kind of Employee.

5

Polymorphism

• Create code that deals with general object

types, without the need to know what

specific type each object is.

• Generate a list of employee names:

– all objects derived from Employee have a name

field since Employee has a name field

– no need to treat managers differently from

anyone else.

6

Method Polymorphism

• The real power comes with
methods/behaviors.

• A better example:

– shape object types used by a drawing program.

– we want to be able to handle any kind of shape
someone wants to code (in the future).

– we want to be able to write code now that can
deal with shape objects (without knowing what
they are!).

7

Shapes

• Shape:

– color, layer fields

– draw() draw itself on the screen

– calcArea() calculates it's own area.

– serialize() generate a string that can be saved and

later used to re-generate the object.

8

Kinds of Shapes

• Rectangle

• Triangle

• Circle

Each could be a kind of shape

(could be specializations of the

shape class).

Each knows how to draw itself,

etc.

Could write code to have all

shapes draw themselves, or save

the whole collection to a file.

9

class definition

class classname {

 field declarations

 { initialization code }

 Constructors

 Methods

}

10

Abstract Class modifier

• Abstract modifier means that the class can

be used as a superclass only.

– no objects of this class can be created.

– can have attributes, even code

• all are inherited

• methods can be overridden

• Used in inheritance hierarchies

11

Interesting Method Modifiers

• private/protected/public:

– protected means private to all but subclasses

– what if none of these specified?

• abstract: no implementation given, must be
supplied by subclass.

– the class itself must also be declared abstract

• final: the method cannot be changed by a subclass
(no alternative implementation can be provided by a
subclass).

12

Interesting Method Modifiers
(that have nothing to do with this slide set)

• native: the method is written in some local

code (C/C++) - the implementation is not

provided in Java (recall assembler routines

linked with C)

• synchronized: only one thread at a time

can call the method (later)

13

Inheritance vs. Composition

• When one object type depends on another,
the relationship could be:

– is-a

– has-a

• Sometimes it's hard to define the
relationship, but in general you use
composition (aggregation) when the
relationship is has-a

14

Composition

• One class has instance variables that refer to

object of another.

• Sometimes we have a collection of objects,

the class just provides the glue.

– establishes the relationship between objects.

• There is nothing special happening here (as

far as the compiler is concerned).

15

Inheritance

• One object type is defined as being a special

version of some other object type.

– a specialization.

• The more general class is called:

– base class, super class, parent class.

• The more specific class is called:

– derived class, subclass, child class.

16

Inheritance

• A derived class object is an object of the

base class.

– is-a, not has-a.

– all fields and methods are inherited.

• The derived class object also has some stuff

that the base class does not provide

(usually).

17

Java Inheritance

• Two kinds:

– implementation: the code that defines methods.

– interface: the method prototypes only.

• Other OOP languages often provide the

same capabilities (but not as an explicit

option).

18

Implementation Inheritance

• Derived class inherits the implementations

of all methods from base class.

– can replace some with alternatives.

– new methods in derived class can access all

non-private base class fields and methods.

• This is similar to (simple) C++ inheritance.

19

Accessing superclass methods

from derived class.

• Can use super() to access all (non-private)

superclass methods.

– even those replaced with new versions in the

derived class.

• Can use super() to call base class

constructor.

– use arguments to specify desired constructor

20

Single inheritance only

(implementation inheritance).

• You can't extend more than one class!

– the derived class can't have more than one base

class.

• You can do multiple inheritance with

interface inheritance.

21

Casting Objects

• A object of a derived class can be cast as an object

of the base class.

– this is much of the power!

• When a method is called, the selection of which

version of method is run is totally dynamic.

– overridden methods are dynamic.

Note: Selection of overloaded methods is done at compile time. There are

some situations in which this can cause confusion.

22

The class Object

• Granddaddy of all Java classes.

• All methods defined in the class Object are

available in every class.

• Any object can be cast as an Object.

23

Interfaces

• An interface is a definition of method

prototypes and possibly some constants

(static final fields).

• An interface does not include the

implementation of any methods, it just

defines a set of methods that could be

implemented.

24

interface implementation

• A class can implement an interface, this

means that it provides implementations for

all the methods in the interface.

• Java classes can implement any number of

interfaces (multiple interface inheritance).

25

Interfaces can be extended

• Creation (definition) of interfaces can be done
using inheritance:

– one interface can extend another.

• Sometimes interfaces are used just as labeling
mechanisms:

– Look in the Java API documentation for interfaces like
Cloneable.

• Example: BubbleSort w/ SortInterfaceDemo

