WANDIWASH
INHERITANCE

Class : II B.C.A

Mrs.R.SAIKUMARI

Assistant Professor
Department of Computer Applications



Inheritance

e On the surface, inheritance iIs a code re-use
ISSue.

— we can extend code that is already written in a
manageable manner.

* Inheritance IS more
— It supports polymorphism at the language level



Inheritance

 Take an existing object type (collection of
fields and methods) and extend it.

— create a special version of the code without re-
writing any of the existing code (or even
explicitly calling it!).

— End result is a more specific object type, called
the sub-class / derived class / child class.

— The original code is called the superclass /
parent class / base class.



Inheritance Example

* Employee: name, email, phone

— FulltimeEmployee: also has salary, office, benefits, ...

« Manager: CompanyCar, can change salaries, rates contracts,
offices, etc.

— Contractor: HourlyRate, ContractDuration, ...

« A manager is a special kind of FullTimeEmployee,
which is a special kind of Employee.



Polymorphism

 Create code that deals with general object
types, without the need to know what
specific type each object is.

» Generate a list of employee names:

— all objects derived from Employee have a name
field since Employee has a name field

— no need to treat managers differently from
anyone else.



Method Polymorphism

» The real power comes with
methods/behaviors.

A better example:
— shape object types used by a drawing program.

— we want to be able to handle any kind of shape
someone wants to code (in the future).

— we want to be able to write code now that can
deal with shape objects (without knowing what
they are!).



Shapes

 Shape:
— color, layer fields

— draw() draw itself on the screen
— calcArea() calculates it's own area.
— serialize() generate a string that can be saved and

later used to re-generate the object.



Kinds of Shapes

» Rectangle
* Triangle

e Circle



class definition

class classname {
field declarations
{ 1nitialization code }
Constructors
Methods



Abstract Class modifier

 Abstract modifier means that the class can
be used as a superclass only.
— no objects of this class can be created.

— can have attributes, even code
« all are inherited
« methods can be overridden

e Used In inheritance hierarchies

10



Interesting Method Modifiers

« private/protected/public:
— protected means private to all but subclasses
— what if none of these specified?
- abstract: N0 Implementation given, must be
supplied by subclass.
— the class itself must also be declared abstract

- final: the method cannot be changed by a subclass

(no alternative implementation can be provided by a
subclass).

11



Interesting Method Modifiers

(that have nothing to do with this slide set)

- native: the method is written in some local
code (C/C++) - the implementation is not
provided in Java (recall assembler routines
linked with C)

- synchronized: only one thread at a time
can call the method (later)

12



Inheritance vs. Composition

» \When one object type depends on another,
the relationship could be:

— Is-a
— has-a

« Sometimes it's hard to define the
relationship, but in general you use

composition (aggregation) when the
relationship Is has-a

13



Composition

e One class has instance variables that refer to
object of another.

« Sometimes we have a collection of objects,
the class just provides the glue.

— establishes the relationship between objects.

 There is nothing special happening here (as
far as the compiler is concerned).

14



Inheritance

« One object type Is defined as being a special
version of some other object type.

— a specialization.

* The more general class is called:
— base class, super class, parent class.

« The more specific class is called:
— derived class, subclass, child class.

15



Inheritance

A derived class object is an object of the
base class.

— 1S-a, not has-a.
— all fields and methods are inherited.
* The derived class object also has some stuff

that the base class does not provide
(usually).

16



Java Inheritance

» Two kinds:
— Implementation: the code that defines methods.
— Interface: the method prototypes only.

» Other OOP languages often provide the
same capabilities (but not as an explicit
option).

17



Implementation Inheritance

 Derived class inherits the implementations
of all methods from base class.

— can replace some with alternatives.

— new methods In derived class can access all
non-private base class fields and methods.

* This is similar to (simple) C++ inheritance.

18



Accessing superclass methods
from derived class.

« Can use super () to access all (non-private)
superclass methods.

— even those replaced with new versions in the
derived class.

« Can use super () to call base class
constructor.
— use arguments to specify desired constructor

19



Single inheritance only
(Implementation inheritance).

 You can't extend more than one class!

— the derived class can't have more than one base
class.

 You can do multiple inheritance with
Interface inheritance.

20



Casting Objects

« Aobject of a derived class can be cast as an object
of the base class.

— this is much of the power!

* When a method is called, the selection of which
version of method is run is totally dynamic.

— overridden methods are dynamic.

Note: Selection of overloaded methods is done at compile time. There are
some situations in which this can cause confusion.

21



The class Object

« Granddaddy of all Java classes.

 All methods defined in the class Object are
available in every class.

» Any object can be cast as an Object.

22



Interfaces

* An Interface iIs a definition of method

prototypes and possibly some constants
(static final fields).

 An Interface does not include the
Implementation of any methods, It just
defines a set of methods that could be
Implemented.

23



Interface Implementation

* Aclass can implement an interface, this
means that it provides implementations for
all the methods in the interface.

» Java classes can implement any number of
Interfaces (multiple interface inheritance).

24



Interfaces can be extended

Creation (definition) of interfaces can be done
using inheritance:

— one Interface can extend another.

Sometimes interfaces are used just as labeling
mechanisms:

— Look In the Java API documentation for interfaces like
Cloneable.

Example: BubbleSort w/ SortinterfaceDemo

25



